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Abstract
Modern data-parallel systems such as Spark rely increasingly
on in-memory computing that can significantly improve
the efficiency of iterative algorithms. To process real-world
datasets, modern data-parallel systems often require ex-
tremely large amounts of memory, which are both costly and
energy-inefficient. Emerging non-volatile memory (NVM)
technologies offers high capacity compared to DRAM and
low energy compared to SSDs. Hence, NVMs have the poten-
tial to fundamentally change the dichotomy between DRAM
and durable storage in Big Data processing. However, most
Big Data applications are written inmanaged languages (e.g.,
Scala and Java) and executed on top of a managed runtime
(e.g., the Java Virtual Machine) that already performs vari-
ous dimensions of memory management. Supporting hybrid
physical memories adds in a new dimension, creating unique
challenges in data replacement and migration.
This paper proposes Panthera, a semantics-aware, fully

automated memory management technique for Big Data
processing over hybrid memories. Panthera analyzes user
programs on a Big Data system to infer their coarse-grained
access patterns, which are then passed down to the Panthera
runtime for efficient data placement and migration. For
Big Data applications, the coarse-grained data division is
accurate enough to guide GC for data layout, which hardly
incurs data monitoring and moving overhead. We have
implemented Panthera in OpenJDK and Apache Spark. An
extensive evaluation with various datasets and applications
demonstrates that Panthera reduces energy by 37 – 52% at
only a 1 – 4% execution time overhead.
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1 Introduction
Modern Big Data computing exemplified by systems such as
Spark and Hadoop is extremely memory-intensive. Lack of
memory can lead to a range of severe functional and perfor-
mance issues including out-of-memory crashes, significantly
degraded efficiency, or even loss of data upon node failures.
Relying completely on DRAM to satisfy the memory need of
a data center is costly in many different ways — e.g., large-
volume DRAM is expensive and energy-inefficient; further-
more, DRAM’s relatively small capacity density dictates that
a large number of machines is often needed just to provide
sufficient memory, resulting in underutilized CPU resources
for workloads that cannot be easily parallelized.
Emerging non-volatile memory (NVM), such as phase

change memory (PCM) [30, 52, 55], resistive random-access
memory (RRAM) [51], Spin-transfer torque memory (STT-
MRAM) [28] or 3DXPoint [4], is a promising technology that,
compared to traditional DRAM, provides higher capacity and
lower energy consumption. Systems with hybrid memories
have therefore received much attention [7–9, 11, 14, 21, 29,
30, 33, 36, 38, 39, 44–46, 49, 50, 53, 54, 56, 57, 60, 61] recently
from both academia and industry. The benefit of mixing
NVM with DRAM for Big Data systems is obvious — NVM’s
high capacity makes it possible to fulfill the high memory
requirement of a Big Data workload with a small number of
compute nodes, holding the promise of significantly reducing
the costs of both hardware and energy in large data centers.
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1.1 Problems

Although using NVM for Big Data systems is a promising
direction, the idea has not yet been fully explored. Adding
NVM naïvely would lead to large performance penalties due
to its significantly increased access latency and reduced band-
width — e.g. the latency of an NVM read is 2-4× larger than
that of a DRAM read and NVM’s bandwidth is about 1/8 -
1/3 of that of DRAM [17, 48] . Hence, a critical research ques-
tion that centers around all hybrid-memory-related research
is how to perform intelligent data allocation and migration
between DRAM and NVM so that we can maximize the overall
energy efficiency while minimizing the performance overhead?
To answer this question in the context of Big Data processing,
there are two major challenges.

Challenge #1:WorkingwithGarbage Collection (GC). A
common approach to manage hybrid memories is to modify
the OS or hardware to monitor access frequency of physical
memory pages, move and keep the hot (frequently-accessed)
data stayed in DRAM. It works well for native language ap-
plications where the hot/cold data stays unmoved in physical
memory. However, GC keeps adjusting the data layout by
copying objects to different physical memory pages, which
breaks the bonding between data and memory address. Most
Big Data systems are written in managed languages such
as Java and Scala for the quick development cycle and rich
community support they provide. Managed programming
languages are executed on top of a managed runtime such
as the JVM, which employs a set of sophisticated memory
management techniques such as garbage collection (GC). As
a traditional garbage collector is not aware of hybrid memo-
ries, allocating and migrating hot/cold pages at the OS level
can easily lead to interference between these two different
levels of memory management.

Challenge #2: Working with Application-level Memory
Subsystems. Modern Big Data systems all contain sophisti-
cated memory subsystems that perform various memory
management tasks at the application level. For instance,
Apache Spark [5] uses resilient distributed datasets (RDDs)
as its data abstraction. An RDD is a distributed data struc-
ture that is partitioned across different servers. At a low
level, each RDD partition is an array of Java objects, each
representing a data tuple. RDDs are often immutable but
can exhibit diverse lifetime behavior. For example, develop-
ers can explicitly persist RDDs in memory for memoization
or fault tolerance. Such RDDs are long-lived while RDDs
storing intermediate results are short-lived.

An RDD can be at one of many storage levels (e.g., memory,
disk, unmaterialized, etc.). Spark further allows developers to
specify, with annotations, where an RDD should be allocated,
e.g., in themanaged heap or nativememory. Objects allocated
natively are not subject to GC, leading to increased efficiency.
However, data processing tasks, such as shuffle, join, map,

or reduce, are performed over the managed heap. A native-
memory-based RDD cannot be directly processed unless it is
first moved into the heap. Hence, where to allocate an RDD
depends on when and how it is processed. For example, a
frequently-accessed RDD should be placed in DRAM while
a native-memory-based RDD would not be frequently used
and placing it on NVM would be fit. Clearly, efficiently using
hybrid memories requires appropriate coordination between
these orthogonal data placement polices, i.e., the heap, native
memory, or disk, v.s. NVM or DRAM.

State of the Art. In summary, the key challenges in sup-
porting hybrid memories for Big Data processing lie in how
to develop runtime system techniques that can make mem-
ory allocation/migration decisions that match how data is
actually used in an application. Although techniques such
as Espresso [53] and Write Rationing [7] support NVM for
managed programs, neither of them was designed for Big
Data processing whose data usage is notoriously different
than that of non-data-intensive applications [40, 41].

For example, Espresso defines a new programming model
that can be used by the developer to allocate objects in per-
sistent memory. However, real-world developers would be
reluctant to completely re-implement their systems from
scratch using such a new model. Shoaib et al. [7] introduced
the Write Rationing GC, which moves the objects that expe-
rience a large/small number of writes into DRAM/NVM to
prolong NVM’s lifetime. Write Rationing pioneers the work
of using the GC to migrate objects based on their access
patterns. However, Big Data systems make heavy use of im-
mutable datasets — for example, in Spark, most RDDs are
immutable. Placing all immutable RDDs into NVM can incur
a large overhead as many of these RDDs are frequently read
and an NVM read is 2–4x slower than a DRAM read.

1.2 Our Contributions

Our Insight. Big Data applications have two unique charac-
teristics that greatly aid hybrid memory management. First,
they perform bulk object creation, and data objects exhibit
strong epochal behavior and clear access patterns. For exam-
ple, Spark developers program with RDDs, each of which
contains objects with exactly the same access/lifetime pat-
terns. Exploiting these patterns at the runtime would make
it much easier for Big Data applications to enjoy the benefit
of hybrid memory.
Second, the data access and lifetime patterns are often

statically observable in the user program. For example, RDD
is a coarse-grained data abstraction in Spark and the access
patterns of different RDDs can often be inferred from the
way they are created and used in the program (§2).

Hence, unlike non-data-intensive applications for which
profiling is often needed to understand the access patterns
of individual objects, we can develop a simple static analysis
for a Big Data application to infer the access pattern of each
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coarse-grained data collection, in which all objects share the
same pattern. This observation aligns well with prior work
(e.g., Facade [41] or Yak [40]) that requires simple annotations
to specify epochs to perform efficient garbage collection
for Big Data systems. The static analysis does not incur
any runtime overhead, yet it can produce precise enough
data access information for the runtime system to perform
effective allocation and migration.

Panthera. We designed and implemented Panthera, a
semantics-aware, fully-automated memory management
technique that can efficiently allocate and migrate data ob-
jects between NVM and DRAM for managed Big Data sys-
tems. Panthera utilizes the accurate coarse-grained data di-
vision to guide GC for data layout, which hardly incurs data
monitoring and moving overhead.

We focus on Apache Spark in this paper as it is the de-facto
data-parallel framework deployed widely in industry. Spark
hosts a range of applications in machine learning, graph ana-
lytics, stream processing, etc., making it worthwhile to build
a specialized runtime system, which can provide immediate
benefit to all applications running atop. Although Panthera
was built for Spark, our idea is applicable to other systems
such as Hadoop as well; §4 provides a detailed discussion of
Panthera’s applicability.

Panthera enhances both the JVM and Spark with two ma-
jor innovations. First, based on the observation that access
patterns in a Big Data application can be identified statically,
we develop a static analysis (§3) that analyzes a Spark pro-
gram to infer a memory tag (i.e., NVM or DRAM) for each
RDD variable based on the variable’s location and the way
it is used in the program. These tags provide indicate which
memory the RDDs should belong to.

Second, we develop a new semantics-aware and physical-
memory-aware generational GC (§4). Our static analysis
instruments the Spark program to pass the inferred memory
tags down to the runtime system, which uses these tags to
make allocation/migration decisions. Since our GC is based
on a high-performance generational GC in OpenJDK, Pan-
thera’s heap has two spaces, representing a young and an old
generation. We place the entire young generation in DRAM
while splitting the old generation into a small DRAM compo-
nent and a large NVM component. The insight driving this
design is based on a set of key observations (discussed in §2
in detail) we make over the lifetimes and access patterns of
RDDs in representative Spark executions:

• Most objects are allocated initially in the young generation.
Since they are frequently accessed during initialization,
placing them in DRAM enables fast access to them.

• Long-lived objects in Spark can be roughly classified into
two categories: (1) long-lived RDDs that are frequently
accessed during data transformation (e.g., cached for itera-
tive algorithms) and (2) long-lived RDDs that are cached
primarily for fault tolerance. The first category of RDDs

fits in the DRAM component of the old generation because
they have long lifespans and DRAM provides desirable per-
formance for frequent access to them. The second category
should be placed into the NVM component of the old gen-
eration because they are infrequently accessed and hence
NVM’s large access latency has relatively small impact on
overall performance.

• There are also short-lived RDDs that store temporary, in-
termediate results. These RDDs die and are then reclaimed
in the young generation quickly, leading to frequent ac-
cesses to this area. This is another reason why we place
the young generation within DRAM.
Based on these observations, we modified both the minor

andmajor GC, which allocate andmigrate data objects, based
on their RDD types and the semantic information inferred
by our static analysis, into the spaces that best fit their life-
times and access patterns. Our runtime system also monitors
the transformations invoked over RDD objects to perform
runtime (re)assessment of RDDs’ access patterns. Even if
the static analysis does not precisely predict an RDD’s ac-
cess pattern and the RDD gets allocated in an undesirable
space, Panthera can still migrate the RDD from one space to
another using the major GC.

Results. We have implemented Panthera in Apache Spark
and OpenJDK 8, and evaluated Panthera extensively with
real-world applications and datasets (Table 4). Results for
various heap sizes and DRAM/NVM ratios demonstrate that
Panthera makes effective use of hybrid memories — overall,
the Panthera-enhanced JVM reduces the memory energy by
37%–52% with only a 1%–4% time overhead, whereas Write
Rationing [7] that moves read-only RDD objects into NVM
incurs a much higher time overhead (i.e., 41%).

2 Background and Motivation
This section discusses necessary background for Apache
Spark [5] and a motivating example that illustrates the access
patterns in a Spark program.

Spark Basics. Spark is a data-parallel system that supports
acyclic data flow and in-memory computing. The major data
representation used by Spark is resilient distributed dataset
(RDD) [58], which represents a read-only collection of tuples.
An RDD is a distributed memory abstraction over an array
of data items of the same type partitioned in the cluster.
Each node maintains an RDD partition, which is essentially a
multi-layer Java data structure — a top RDD object references
a Java array, which, in turn, references a set of tuple objects
such as key-value pairs. Figure 1 shows the heap structure
for an example RDD where each element is a pair of a string
(key) and a compact buffer (value).

A Spark pipeline consists of a sequence of transformations
and actions over RDDs. A transformation produces a new
RDD from a set of existing RDDs; examples are map, reduce,
or join. An action is a function that computes statistics from
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1 Top : ob j org / apache / spa rk / rdd / Shuff ledRDD
2 depth [ 0 ] : a r ray , [ L s c a l a / Tuple2 ;
3 depth [ 1 ] : ob j s c a l a / Tuple2
4 depth [ 2 ] : ob j j a v a / l ang / S t r i n g
5 depth [ 3 ] : a r r ay [C
6 depth [ 2 ] : ob j spa rk / u t i l / c o l l e c t i o n / CompactBuf fer
7 depth [ 3 ] : a r ray , [ L j ava / l ang / S t r i n g ;
8 depth [ 4 ] : ob j j a v a / l ang / S t r i n g
9 depth [ 5 ] : a r r ay [C
10 depth [ 4 ] : ob j j a v a / l ang / S t r i n g
11 depth [ 5 ] : a r r ay [C

Figure 1. The heap structure of an example RDD.

an RDD, such as an aggregation. Spark leverages lazy eval-
uation for efficiency, that is, a transformation may not be
evaluated until an action is performed later on the result-
ing RDD. Before data processing starts, the dependences
between RDDs are first extracted from the transformations
to form a lineage graph, which can be used to conduct lazy
evaluation and RDD recomputation upon node failures.

With lazy evaluation, a transformation only creates a (top-
level) RDD object without materializing the RDD (i.e., the
point at which its internal array and actual data tuples are
created). Recomputing all RDDs is time-consuming when
the lineage is long or when it branches out, and hence, Spark
allows developers to cache certain RDDs in memory (by
using the API persist) . Developers can specify a storage
level for a persisted RDD, e.g., in memory or on disk, in
the serialized or deserialized form, etc. RDDs that are not
explicitly persisted are temporary RDDs that will be garbage-
collected when they are no longer used, while persisted
RDDs are materialized and never collected.

The Spark scheduler examines the lineage graph to build
a DAG of stages for execution. The lineage (transformation)-
based dependences are classified into “narrow” and “wide”.
A narrow dependence exists from a parent to a child RDD if
each partition of the parent is used by at most one partition of
the child RDD. By contrast, a wide dependence exists when
each partition of the parent RDD may be used by multiple
child partitions. Distinguishing these two types of depen-
dences makes it possible for Spark to determine whether a
shuffle is necessary. For example, for narrow dependences
shuffling is not necessary, while for wide dependences it is.

A Spark pipeline is split into a set of stages based on shuf-
fles (and thus wide dependences) — each stage ends at a
shuffle that writes RDDs onto the disk and the next stage
starts by reading data from disk files. Transformations that
exhibit narrow dependences are grouped into the same stage
and executed in parallel.

RDDCharacteristics. An RDD is, at a low level, an array of
Java objects, which are managed by the semantics-agnostic
GC in the JVM. RDDs often exhibit predictable lifetime and
memory-access patterns. Our goal is to pass these patterns
down to the GC, which can exploit such semantic infor-
mation for efficient data placement. We provide a concrete
example to illustrate these patterns.

Figure 2(a) shows the Spark program for PageRank [12],
which is a well-known graph algorithm used widely by
search engines to rank web pages. The program iteratively
computes the rank of each vertex based on the contribu-
tions of its in-neighbors. Three RDDs can be seen from its
source code: links representing edges from the input graph,
contribs containing contributions from incoming edges of
each vertex, and ranks that maps each vertex to its page
rank. links is a static map computed from the input while
contribs and ranks are recomputed per iteration of the loop.

In addition to these three developer-defined RDDs visible
in the program, Spark generates many invisible RDDs to
store intermediate results during execution. A special type
of intermediate RDD is ShuffledRDD. Each iteration of the
loop in the example forms a stage that ends at a shuffle, writ-
ing shuffled data into different disk files. In the beginning of
the next stage, Spark creates a ShuffledRDD as input for the
stage. Unlike other intermediate RDDs that are never mate-
rialized, ShuffledRDDs are immediately materialized because
they contain data read freshly out of disk files. However,
since they are not persisted, they will be collected when the
stage is completed.
In summary, (1) persisted RDDs are materialized at the

moment the method persist is called, and (2) non-persisted
RDDs are not materialized unless they are ShuffleRDDs or
an action is invoked on them.

Example. Figure 2(b) shows the set of RDDs that exists
within a stage (i.e., iteration) and their dependences. Suppose
each RDD has three partitions (on three nodes). The dashed
edges represent wide dependences (i.e., shuffles) due to the
reduction on Line 17. There are totally eight RDDs gener-
ated in each iteration. ShuffledRDD[8], which stems from the
reduction on Line 17, is transformed to ranks via a map trans-
formation. ranks joins with links to form CoGroupedRDD[3],
which is then processed by four consecutive map functions,
i.e., f4 – f7, producing contribs at the end. For unmateri-
alized (blue) RDDs, the sequence of transformations (e.g.,
f4 ◦ . . . ◦ f7) is applied to each record from the source RDD
in a streaming manner via iterators to produce a final record.

For links and contribs, the developer invokes the method
persist to materialize these RDDs. The storage levels indi-
cate that links is cached in memory throughout the execu-
tion (as it is used in each iteration) while contribs generated
in each iteration is kept in memory but will be serialized to
disk upon memory pressure. ranks is not explicitly persisted.
Hence, it is not materialized until the execution reaches
Line 20 where action count is invoked on the RDD object.

The lifetime patterns of these different RDDs fall into two
categories. Non-persisted intermediate RDDs are short-lived
as their data objects are generated only during streaming.
Persisted RDDs are long-lived and stay in memory/on disk
until the end of the execution. Their access patterns are,
however, more diverse. Objects in an intermediate RDD are
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1 var l i n e s = c t x . t e x t F i l e ( a r g s [ 0 ] ,
s l i c e s )

2 var l i n k s = l i n e s . map { s=>
3 var p a r t s = s . s p l i t ( "\\s+" )
4 ( p a r t s ( 0 ) , p a r t s ( 1 ) )
5 } . d i s t i n c t ( ) . groupByKey ( )
6 . p e r s i s t ( S t o r a g e L e v e l .MEMORY_ONLY)
7
8 var ranks = l i n k s . mapValues ( v => 1 . 0 )
9 f o r ( i <− 1 to i t e r s ) {
10 var c o n t r i b s =

l i n k s . j o i n ( ranks ) . v a l u e s . f l a tMap {
11 c a s e ( u r l s , rank ) =>
12 v a l s i z e = u r l s . s i z e
13 u r l s . map ( u r l => ( u r l , rank / s i z e ) )
14 . p e r s i s t ( S t o r a g e L e v e l
15 . MEMORY_AND_DISK_SER )
16 }
17 ranks = c o n t r i b s . reduceByKey ( _ + _ ) .
18 mapValues ( 0 . 1 5 + 0 . 8 5 ∗ _ )
19 }
20 ranks . count ( )

f2(j)

f2(i)

f2(k)

f3(j)

f3(i)

f3(k)

Shuf

MapPartitionsRDD[2] ranks

CoGroupedRDD[3]

Numbers in brackets represent RDD IDs;  blue boxes represent 
unmaterialized intermediate results while black boxes 
represent materialized RDDs. Solid and dashed edges 
represent narrow and wide dependences, respectively.
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Figure 2. Characteristics of RDDs in Spark PageRank.

accessed at most once during streaming. Objects in a per-
sisted RDD can exhibit different types of behavior. For RDDs
like links that are used in each iteration, their objects are
frequently accessed. In contrast, RDDs like contribs are per-
sisted primarily for speeding up recovery from faults, and
hence, their objects are rarely used after generated.

Design Choices. The different characteristics of DRAM and
NVM make them suitable for different types of datasets.
DRAM has low capacity and fast access speed, while NVM
has large capacity but slow speed. Hence, DRAM is a good
choice for storing small-sized, frequently-accessed datasets,
while large-sized, infrequently-accessed datasets fit natu-
rally into NVM. The clear distinction in the lifespans and
access patterns of different RDDs makes it easy for them to
be placed into different memories suitable for their behavior.
For example, intermediate (blue) RDDs are never material-
ized. Their objects are created individually during streaming
and then quickly collected by the GC. These objects are allo-
cated in the young generation and will eventually die there.
Although they are short-lived, they are accessed frequently
during streaming. This motivates our design choice of plac-
ing the young generation in DRAM.
Persisted RDDs, in contrast, have all their data objects

created at the same time, and thus need large storage space.
Since they are kept alive indefinitely, they should be allocated
directly in the old generation. One category of persisted
RDDs includes those that are frequently accessed, such as
links; they need to be placed in DRAM. Another category
includes RDDs that are rarely accessed and cached just for
fault tolerance, like contribs, these RDDs should be placed
in NVM. This behavioral difference motivates our choice

of splitting the old generation into a DRAM and an NVM
component.
We perform what we suggest on a system with 32GB

DRAM and 88GB NVM using Spark-based PageRank as the
benchmark. Figure 2(c) shows the performance and energy
consumption normalized to a system with 120GB of DRAM.
Compared to 32GB DRAM only, adding 88GB NVM to the
system brings modest performance benefits (15%) and 47%
worse energy consuming if without proper data layout man-
agement (Unmanaged, § 5.2). After applying Panthera, RDD
links and contribs are placed into DRAM and NVM corre-
spondingly. Performance is 42% better than 32GB DRAM,
achieving the same as 120GB DRAM, with only 5% more
energy consumption.

3 Static Inference of Memory Tags
Based on our observation that the access patterns of RDDs
can often be identified from the program using them, we
developed a simple static analysis that extracts necessary
semantic information for efficient data placement. The anal-
ysis automatically infers, for each persisted RDD visible in
the program, whether it should be allocated in DRAM or
NVM. This information is then passed down to the runtime
system for appropriate data allocation.

Static Analysis. In a Spark program, the developer can in-
voke persist with a particular storage level on an RDD to
materialize the RDD, as illustrated in Figure 2. We piggyback
on the storage levels to further determine if a persisted RDD
should be placed into DRAM or NVM. In particular, Panthera
statically analyzes the program to infer a memory tag (i.e.,
DRAM or NVM) for each persist call. Each of the ten ex-
isting storage levels (e.g., MEMORY_ONLY), except for OFF_HEAP
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and DISK_ONLY, is expanded into two sub-levels, annotated
with NVM and DRAM, respectively (e.g., MEMORY_ONLY_DRAM
and MEMORY_ONLY_NVM). OFF_HEAP is translated directly into
OFF_HEAP_NVM because RDDs placed in native memory are
rarely used, while DISK_ONLY does not carry any memory tag.

Our static analysis conducts inference based on the def-use
informationw.r.t. each RDD variable declared in the program
as well as the loop(s) in which the variable is defined/used.
Our key insight is that if the variable is defined in each
iteration of a computational loop, most of the RDD instances
represented by the variable are not used frequently. This is
because Spark RDDs are often immutable and hence, every
definition of the RDD variable creates a new RDD instance at
run time, leaving the old RDD instance cached and unused.
Hence, we tag the variable “NVM”, instructing the runtime
system to place these RDDs in NVM. An example is variable
contribs in Figure 2(a), which is defined in every iteration of
the loop — although the variable is also used in each iteration,
the use refers to the most recent RDD instance created in
the last iteration while the instances created in all the other
past iterations are left unused.
By contrast, if a variable is used-only (i.e., never defined)

in the loop, such as links, we create a tag “DRAM” for it
since only one instance of the RDD exists and is repeatedly
used. Panthera analyzes not only RDD variables on which
persist is explicitly called, but also those on which actions
are invoked, such as variable ranks in Figure 2(a). The tag
inferred for an RDD variable (say v) is passed, at the mate-
rialization point of every RDD instance (v refers to), into
the runtime system via automatically instrumented calls to
auxiliary (native) methods provided by the Panthera JVM.
We piggyback on a tracing GC to propagate this tag from the
RDD object down to each data object contained in the RDD
— when the GC runs, it moves objects with the same tag
together into the same (DRAM or NVM) region. §4 describes
the details.
One constraint that needs to be additionally considered

is the location of the loop relative to the location of the
materialization point of the RDD.We analyze the loop only if
the materialization point precedes or is in the loop. Otherwise,
whether the variable is used or defined in the loop does
not matter as the RDD has not been materialized yet. For
instance, although variable ranks is defined in the loop that
starts at Line 17, it does not get materialized until Line 20
after the loop finishes. Hence, its behavior in the loop does
not affect its memory tag, which should actually depend on
its def-use in the loops, if any, after Line 20.
If no loop exists in a program, the program has only one

iteration and all the RDDs receive an “NVM” tag as none of
them are repeatedly accessed. If there are multiple loops to
be considered for an RDD variable, we tag it “DRAM” as long
as there exists one loop in which the variable is used-only
and that loop follows or contains the materialization point of
the RDD. It receives an “NVM” tag otherwise. If all persisted

RDDs receive an “NVM” tag at the end of the analysis, we
change the tags of all RDDs to “DRAM” — the goal here is
to fully utilize DRAM by first placing RDDs in DRAM. Once
DRAM is exhausted, the remaining RDDs, including those
with a “DRAM” tag, will be placed in NVM.

Note that our analysis infers tags only for the RDD vari-
ables explicitly declared in the program. Intermediate RDDs
produced during execution are not materialized and thus do
not receive memory tags from our analysis. We discuss how
to handle them in §4.

The memory tag of an RDD variable is a static approxima-
tion of its access pattern, which may not reflect the behavior
of all RDD instances represented by the variable at run time.
However, user code for data processing often has a simple
batch-transformation logic. Hence, the static information
inferred from our analysis is often good enough to help the
runtime make a precise placement decisions for RDD. In
case the statically inferred tags do not precisely capture the
RDD’s access information, Panthera has the ability to move
RDDs between NVM and DRAM (within the old generation)
based on their runtime access frequencies, when a full-heap
GC occurs. §4 provides a full discussion for this mechanism.

Dealing with ShuffledRDD. Recall from §2 that, in addi-
tion to the RDDs on which persist is explicitly invoked,
ShuffledRDDs, which are created from disk files after a shuf-
fle, are also materialized. These RDDs are often the input
of a stage but invisible in the program code. The challenge
here is where to place them. Our insight is that their place-
ment should depend on the other materialized RDDs that are
transformed from (i.e., depend on) them in the same stage.

For example, in Figure 2(b), the input of the stage are two
sets of ShuffledRDDs: [1] and [8]. ShuffledRDD[1] is the RDD
represented by links and our static analysis already infers
tag “DRAM” for it. ShuffledRDD[8] results from the reduction
in the previous stage. Because ShuffledRDD[8] transitively
produces MapPartitionRDD[7] (represented by contribs) and
MapPartitionRDD[7] has a memory tag “NVM” inferred by
our static analysis, we tag ShuffledRDD[8] “NVM” as well.

The main reason is that RDDs belonging to the same stage
may share many data objects for optimization purposes. For
example, a map transformation that only changes the values
(of key-value pairs) in RDD A may generate a new RDD B
that references the same set of key objects as in A. If B has
already received a memory tag from our static analysis, it is
better to assign the same tag toA so that these shared objects
do not receive inconsistent tags and would not need to be
moved from one memory to another when B is generated
fromA. This is especially beneficial when the transformation
is in a computational loop — a large number of objects would
be moved if A and B have different memory tags.
To assign the same tag to A and B, we add support that

scans the lineage graph at the beginning of each stage to
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propagate the memory tag backward, starting from the low-
est materialized RDD in the graph that has received a tag
from our analysis. Conflicts may occur during the propaga-
tion — an RDD encountered during the backward traversal
may have an existing tag that is different from the tag be-
ing propagated. To resolve conflicts, we define the following
priority order: DRAM > NVM, which means that upon a con-
flict, the resulting tag is always DRAM. This is because our
goal is to minimize the NVM-induced overhead; RDDs with
a “DRAM” tag inferred will be frequently used and putting
them in NVM would cause large performance degradation.

4 The Panthera Garbage Collector
While our static analysis (§3) determines where RDDs should
be allocated, this information has to be communicated down
to the runtime system, which recognizes only objects, not
RDDs. Hence, our goal is to develop a new GC that, when
placing/moving data objects, is aware of (1) the high-level
semantics about where (DRAM or NVM) these RDDs should
be placed and (2) the low-level information about the RDDs
to which these objects belong.
We have implemented our new collection algorithm in

OpenJDK 8 (build jdk8u76-b02) [6]. In particular, we have
modified the object allocator, the interpreter, the two JIT
compilers (C1 and Opto), and the Parallel Scavenge collector.

4.1 Design Overview

HeapDesign. The Panthera GC is based on the Parallel Scav-
enge collector, which is the default GC in OpenJDK8. The
collector divides the heap into a young and an old generation.
As discussed earlier in §1, Panthera places the young gener-
ation in DRAM and splits the old generation into a DRAM
component and an NVM component. The off-heap native
memory is placed entirely in NVM. We reserve two unused
bits, referred to as MEMORY_BITS, from the header of each ob-
ject to indicate whether the object should be allocated into
DRAM (01) or NVM (10). The default value for these bits is
00 — objects that do not receive a tag have this default value.
They will be promoted to the NVM component of the old
generation if they live long enough. Figure 3 illustrates the
heap structure and our allocation policies.

Allocation Policies. As discussed in §3, each materialized
RDD carries a memory tag that comes from our static analy-
sis or lineage-based tag propagation. However, at a low level,
an RDD is a structure of objects, as illustrated in Figure 1, and
these objects are created at different points of execution. Our
goal is to place all objects belonging to the same logical RDD
— including the top object, the array object, tuple objects,
and other objects reachable from tuples — together in the
space suggested by the RDD’s memory tag, because these
objects likely have the same access pattern and lifetime.

However, this is rather challenging to achieve — our static
analysis infers a memory tag for each top RDD object (whose
type is a subtype of org.apache.spark.rdd.RDD) in the user
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Figure 3. The Panthera heap and allocation policies.

program and we do not know what other objects belong
to this RDD by just analyzing the user program. Statically
identifying what objects belong to a logical data structure
would require precise context-sensitive static analysis of both
user and system code, which is difficult to do due to Spark’s
extremely large codebase and the scalability issues of static
analysis.

Our idea to solve this problem is that instead of attempting
to allocate all objects of an RDD directly into the space (say
S) suggested by the RDD’s tag, we allocate only the array
object into S upon its creation. This is much easier to do —
Panthera instruments each materialization point (e.g., before
a call to persist or a Spark action) in the user program to
pass the tag down to the runtime system without needing to
analyze the Spark system code. Since the array is created at
materialization, the runtime system can just use the tag to
determine where to place it. All other objects in the RDD are
not immediately allocated in S due to the aforementioned
difficulties to find their allocation sites. They are still allo-
cated in the young generation as usual. Later, we use the GC
to move these objects into S as tracing is performed.

Another important reason why we first allocate the array
object into S is because the array is often much larger than
the top and tuple objects. It is much more efficient to allocate
it directly into the space it belongs to rather than allocating
it somewhere else and moving it later.

Table 1 shows our allocation policies for different types of
objects in an RDD. For RDDs with tag “DRAM”, their array
objects are allocated directly into the DRAM component of
the old generation if it has enough space. Otherwise, they
have to be allocated in the NVM component. For those with
tag “NVM”, their array objects are allocated directly into the
NVM component. Intermediate RDDs without tags are all
allocated in the young generation (DRAM). Most of them
end up dying there and never get promoted, while a small
number of objects that eventually become old enough will
be promoted to the NVM space of the old generation. Top
RDD objects and data tuple objects, as discussed earlier, are
all allocated into the young generation and moved later by
the GC to the spaces containing their corresponding arrays.
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Table 1. Panthera’s Allocation policies.
Tag Obj Type Initial Space Final Space

DRAM
RDD Top Young Gen. DRAM of Old Gen.
RDD Array DRAM of Old Gen. DRAM of Old Gen.
Data Objs Young Gen. DRAM of Old Gen.

NVM
RDD Top Young Gen. NVM of Old Gen.
RDD Array NVM of Old Gen. NVM of Old Gen.
Data Objs Young Gen. NVM of Old Gen.

NONE
RDD Top Young Gen. Young Gen. or NVM of Old Gen.
RDD Array Young Gen. Young Gen. or NVM of Old Gen.
Data Objs Young Gen. Young Gen. or NVM of Old Gen.

4.2 Implementation and Optimization

This subsection describes our implementation techniques
and various optimizations that have substantially improved
Panthera’s runtime performance.

4.2.1 Passing Tags

Right before each materialization point (i.e., the invocation
of persist or a Spark action), our analysis inserts a call to
a native method rdd_alloc(rdd, tag), with the RDD’s top
object (rdd) and the inferred memory tag (tag) as the argu-
ments. This method first sets a thread-local state variable
to DRAM or NVM, according to the tag, informing the cur-
rent thread that a large array for an RDD will be allocated
soon. Next, rdd_alloc sets the MEMORY_BITS of the top object
rdd based on tag. Regardless of where it currently is, this
top object will eventually be moved by the GC to the space
corresponding to tag.
The thread then transforms into a “wait” state, waiting

for this large array. In this state, the first allocation request
for an array whose length exceeds a user-defined threshold
(i.e. a million used in our experiments) is recognized as the
RDD array. Panthera then allocates the array directly into
the space indicated by tag. To implement this, we modified
both the fast allocation path, assembly code generated by
JIT compiler, and the slow path, functions implemented in
C++. After this allocation, the state variable is reset and
the thread exits the wait state. If tag is null, the array is
allocated in the young generation, preferably through the
thread-local allocation buffer (TLAB), and the MEMORY_BITS

of the top object remains as the default value (00).

4.2.2 Object Migration

There are two major challenges in how to move objects:
cross-generation migration and object compaction. As Pan-
thera piggybacks on a generational GC, objects in the young
generation that survive several minor GCs are deemed long-
lived and moved into the old generation. We leverage this
opportunity to move together objects that belong to the same
logical RDD — as discussed earlier, these objects might not
have been allocated in the same space initially.

Minor GC. To do this, we modified the minor collection
algorithm in the Parallel Scavenge GC on which Panthera is
built. The existing minor GC contains three tasks: root-task,
which performs object tracing from the roots (e.g., stack and

global variables) ; old-to-young-task, which scans references
from objects in the old generation to those in the young
generation to identify (directly or transitively) reachable
objects; and steal-task, which performs work stealing for
load balancing. To support our object migration, we split
old-to-young-task into a DRAM-to-young-task and NVM-to-
young-task, that find objects that should be moved into the
DRAM and NVM parts of the old generation, respectively.
For these two tasks, we modified the tracing algorithm

to propagate the tag — for example, scanning a reference
from a DRAM-based RDD array (with tag “DRAM”) to a
tuple object (in the young generation) propagates the tag to
the tuple object (by setting its MEMORY_BITS). Hence, when
tracing is done, all objects reachable from the array have their
MEMORY_BITS set the value as the array. In the original GC
algorithm, an object does not get promoted from the young
to the old generation until it survives several minor GCs. In
Panthera, however, we move the objects whose MEMORY_BITS

is set as 01 (10) in tracing immediately to DRAM (NVM)
space in the old generation, We refer to this mechanism as
eager promotion.

Objects whose MEMORY_BITS is not set, 00, in tracing belong
to intermediate RDDs or are control objects not associated
with any RDDs. The migration of these objects follows the
original algorithm, that is, they will be moved only if they
survive several minor GCs.
Furthermore, we also need to move RDD top objects to

the appropriate part of the old generation. These top ob-
jects, whose MEMORY_BITS was set by the instrumented call to
rdd_alloc at their materialization points, are visited when
root-task is executed because these objects are referenced
directly by stack variables. We modified the root-task algo-
rithm to identify objects with the set MEMORY_BITS. These
RDD top objects will also be moved to (the DRAM (01) or
NVM (10) space of) the old generation by the minor GC.

Major GC. When a major GC runs, it performs memory
compaction by moving objects together (in the old gener-
ation) to reduce fragmentation and improve locality. We
modified the major GC to guarantee that compaction does
not occur across the boundary between DRAM and NVM.
Furthermore, when the major GC performs a full-heap scan,
Panthera re-assesses, for each RDD array object, where the
object should be actually placed based on the RDD’s runtime
access frequency. This frequency is measured by counting,
using instrumentation, how many times a method (e.g., map
or reduce) has been invoked on this RDD object.
We maintain a hash table that maps each RDD object to

the number of calls made on the object. Our static analysis
inserts, at each such call site, a JNI (Java Native Interface)
call that invokes a native JVM method to increment the call
frequency for the RDD object. Frequently (infrequently)
accessed array objects will be moved from the NVM (DRAM)
space to the DRAM (NVM) space within the old generation
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and all objects reachable from these arrays will be moved as
well. Their MEMORY_BITS will be updated accordingly. At the
end of each major GC, the frequency for each RDD is reset.
The DRAM space of the old generation can be quickly

filled up as it is much smaller than the NVM space. When
the DRAM space is full, the minor GC moves all objects from
the young generation to the NVM space of the old generation
regardless of their memory tags.

Conflicts. If an object is reachable from multiple references
and different tags are propagated through them, a conflict
occurs. As discussed earlier, we resolve conflicts by giving
“DRAM” higher priority than “NVM”. As long as the object
receives “DRAM” from any reference, it is a DRAM object
and will be moved to the DRAM space of the old generation.

4.2.3 Card Optimization

In OpenJDK, the heap is divided into many cards, each rep-
resenting a region of 512 bytes. Every object can take one or
more cards, and the write barrier maintains a card table that
marks certain cards dirty upon reference writes. The card
table can be used to efficiently identify references during
tracing. For example, upon a.f = b, the card that contains
the object referenced by a is set to dirty. When a minor GC
runs, the old-to-young scavenge task cleans a card if the
target objects of the (old-to-young) references contained in
the memory region represented by the card have been copied
to the old generation.

However, if a card contains two large arrays (say A and B)
— e.g., A ends in the middle of the card while B starts there
immediately — significant inefficiencies can result when they
are scanned by two different GC threads. The card would
remain dirty even if all objects referenced by A and B have
been moved from the young to the old generation — neither
thread could clean the card due to its unawareness of the
status of the array scanned by another thread. This would
cause every minor GC to scan every element of each array
in the dirty card until a major GC occurs.
This is a serious problem for Big Data applications that

make heavy use of large arrays. Shared cards exist perva-
sively when these arrays are frequently allocated and deallo-
cated. Frequent scanning of such cards with multiple threads
can incur a large overhead on NVM due to its higher read
latency and reduced bandwidth. We implemented a simple
optimization that adds an alignment padding for the alloca-
tion of each RDD array to make the end of the array align
with the end of a card. Although this leads to space inefficien-
cies, the amount of wasted space is small (e.g., less than 512
bytes for each array of hundreds of megabytes) while card
sharing among arrays is completely eliminated, resulting in
substantial reduction in GC time.

4.3 Applicability

Our static analysis is designed specifically for Spark and
not easily reusable to other framework. However, the APIs

for data placement and migration provided by the Panthera
runtime system can be employed to manage memory for any
Big Data system that uses a key-value array as its backbone
data structure. Examples include Apache Hadoop, Apache
Flink, or database systems such as Apache Cassandra.
Panthera provides two major APIs, one for pre-tenuring

data structures with tags and a second for dynamic monitor-
ing and migration. The first API takes as input an array and
a tag, performing data placement as discussed earlier in this
section. The tag can come from the developer’s annotations
in the program or from a similar static analysis designed
specifically for the system to be optimized.

To illustrate, consider Apache Hadoop where both a map
worker and a reduce worker may need to hold large data
structures in memory. Some of these data structures are
loaded from HDFS as immutable input, while others are fre-
quently accessed. In the case of HashJoin, which is a building
block for SQL engines, one input table is loaded entirely in
memory while the second table is partitioned across map
workers. If map workers are executed in separate threads,
they all share the first table and join their own partitions
of the second table with it. The first table is long-lived and
frequently accessed. Hence, it should be tagged DRAM and
placed in the DRAM space of the old generation, while differ-
ent partitions of the second table can be placed in the young
generation and they will die there quickly.
Panthera’s second API takes as input a data structure

object to track the number of calls made on the object. If
this API is used to track the access frequency of the data
structure, the data structure (and all objects reachable from
it) would not be pretenured (as specified by the first API), but
rather, they are subject to dynamic migration performed in
the major GC. We can use this API to dynamically monitor
certain objects and migrate them if their access patterns are
not easy to predict statically.

Use of these two APIs enables a flexible allocation/migra-
tionmechanism that allows certain parts of the data structure
(e.g., for which memory tags can be easily inferred) to be
pretenured and other parts to be dynamically migrated.

5 Evaluation
We have added/modified 9186 lines of C++ code in OpenJDK
(build jdk8u76-b02) to implement the Panthera GC and writ-
ten 979 lines of Scala code to implement the static analysis.

5.1 NVM Emulation and Hardware Platform

Most of the prior works on hybrid memories used simulators
for experiments. However, none of them support Java ap-
plications well. We cannot execute managed-runtime-based
distributed systems on these simulators. There also exist em-
ulators such as Quartz [48] and PMEP [16] that support em-
ulation of NVM for large programs using commodity multi-
socket (NUMA) hardware, but neither Quartz nor PMEP
could run OpenJDK. These emulators require developers
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to use their own libraries for NVM allocation, making it
impossible for the Panthera GC to migrate objects without
re-implementing the entire allocator and GC from scratch
using these libraries.

As observed in [27, 48], NUMA’s remote memory latency
is close to NVM’s latency, and hence, researchers have used
a NUMA architecture as the baseline to measure emulation
accuracy. Following this observation, we built our own emu-
lator on NUMA machines to emulate hybrid memories for
JVM-based Big Data systems.

We followed Quartz [48] when implementing our emula-
tor. Quartz has two major components: (1) it uses the thermal
control register to limit the DRAM bandwidth; and (2) it cre-
ates a daemon thread for each application process and inserts
delay instructions to emulate the NVM latency. For example,
if an application’s CPU stall time is S , Quartz scales its la-
tency to S ×

NVM_latency
DRAM_latency to emulate the effect of NVM. For

(1), we used the same thermal control register to limit the
read/write bandwidth. Like Quartz, we currently do not sup-
port different bandwidths for reads and writes. For (2), we
followed Quartz’s observation to use the latency of NUMA’s
remote memory to model NVM’s latency.
An alternative approach to emulating NVM’s latency is

to instrument loads/stores during JIT compilation, injecting
a software-created delay at each load/store. The limitation
of this approach, however, is that it does not account for
caching effects and memory-level parallelism.

We used one CPU to run all the computation, the memory
local to the CPU as DRAM, and the remote memory as NVM.
In particular, DRAM and NVM are emulated, respectively,
using 2 local and 2 remote memory channels. The perfor-
mance specifications of the emulated NVM are the same as
those used in [48], reported in Table 2. We obtained the NVM
configurations from Micron’s specification [37]. To emulate
NVM’s slow write speed, we used the thermal control regis-
ter to limit the bandwidth of the remote memory — the read
and write bandwidth is 10GB/s each. The remote memory’s
latency in our setting is 2.6× of the local memory.

Table 2. Comparisons of DRAM and NVM.
DRAM NVM

Read latency (ns) 120 300 (one-hop)

Bandwidth (GB/s) 30 10 (limited by the ther-
mal control register)

Capacity per CPU 100s of GBs Terabytes
Estimated price 5× 1×

Energy Estimation. We followed Lee at el. [30] to estimate
energy for NVM. Micron’s DDR4 device specifications [37]
were used to model DRAM’s power. NVM’s energy has a
static and dynamic component. The static component is neg-
ligible compared to DRAM [31]. The dynamic component
consists of the energy consumed by reads and writes. Reads

on NVM consume less energy than on DRAM as they do not
require restoration due to their non-destructive nature.
NVM writes consume more energy than DRAM writes.

Upon a row-buffer miss, the energy consumed by each write
has three components: (1) an array read to test if data is
in the cache (from the bank array to the row buffer), (2) a
row buffer write that writes data from the CPU last level
cache to the row buffer, and (3) an array write that moves
data from the row buffer into the bank array. Assuming
the row-buffer miss ratio is 0.5, we computed these three
components separately by considering the row buffer’s write
energy (1.02pJ/bit), size (i.e., 8K bits for DRAM [37], 32 bits-
wide partial writes back for NVM [30]) and miss rate (0.5), as
well as the array’s write-back energy (16.8pJ/bit × 7.6% for
NVM) and read energy (2.47pJ/bit for NVM). The factor of
7.6% is due to Lee et al’s optimization [30] that writes only
7.6% of the dirty words back to the NVM array. In total, the
NVM energy consumption per cache line write is 31200 pJ.
CPU’s uncore events, collected with Vtune, were em-

ployed to compute the numbers of reads and writes. In par-
ticular, the events we used were UNC_M_CAS_COUNT.RD and
UNC_M_CAS_COUNT.WR. Vtune can also distinguish reads and
writes between local and remote memories.

5.2 Experiment Setup

We set up a small cluster to run Spark with one master node
and one slave node — these two servers have a special Intel
chipset with a “scalable memory buffer” that can be tuned to
produce the 2.6× latency in remote memory accesses, which
matches NVM’s read/write latency. We could not obtain this
latency from our other servers. Since our focus is not on
distributed computing, this small cluster is sufficient for us to
execute real workloads on Spark and understand their perfor-
mance over hybrid memories. Table 3 reports the hardware
configurations of the Spark master and Spark slave nodes.
Each node has an 8-core CPU and the Parallel Scavenge col-
lector on which Panthera was built creates 16 GC threads
in each (minor or major) GC to perform parallel tracing and
compaction.

Table 3. Hardware configuration.
Arch NUMA, 4 sockets

QPI 6.4GT/S, directory-based MESIF
CPU E7-4809 v3 2.00GHz, 8 cores, 16 HW threads
L1-I 8 way, 32KB/core, private
L1-D 8 way, 32KB/core, private
L2 8 way, 256KB/core, private
L3 20 way,20MB, shared

Memory DDR 4, 1867MHz, SMI 2 channels

The negative impact of the GC latency increases with the
number of compute nodes. As reported in [34], a GC run on
a single node can hold up the entire cluster — when a node
requests a data partition from another server that is running
GC, the requesting node cannot do anything until the GC is
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done on the second node. Since Panthera can significantly
improve the GC performance on NVM, we expect Panthera
to provide even greater benefit when Spark is executed on a
large NVM cluster.

System Configurations. We experimented with two differ-
ent heap sizes (64GB and 120GB) and three different DRAM
sizes (1/4, 1/3, and 100% of the total memory). The config-
uration with 100% DRAM was used as a baseline for us to
compute the overhead of Panthera under hybrid memories.
Prior works on NVM often used smaller DRAM ratios in

their configurations. For example, Write Rationing [7] used
1GB DRAM and 32GB NVM in their experiments. However,
as we deal with Big Data systems, it would not be possible
for us to use a very small DRAM ratio — in our experiments,
a regular RDD consumes 10-30GB memory, and hence, we
had to make DRAM large enough to hold at least one RDD.
The nursery space is placed entirely in DRAM. We have

experimented with several different sizes (1/4, 1/5, 1/6, and
1/7 of the heap size) for the nursery space. The performance
differences between the 1/4, 1/5, and 1/6 configurations were
marginal (even under the original JVM), while the configu-
ration of 1/7 led to worse performance. We ended up using
1/6 in our experiments to achieve good nursery performance
and simultaneously leave more DRAM to the old generation.

Table 4. Spark programs and datasets.
Program Dataset Initial Size
PageRank (PR) Wikipedia Full Dump, German [3] 1.2GB
K-Means (KM) Wikipedia Full Dump, English [3] 5.7GB
Logistic Regression (LR) Wikipedia Full Dump, English [3] 5.7GB
Transitive Closure (TC) Notre Dame Webgraph [2] 21MB
GraphX-Connected
Components (CC) Wikipedia Full Dump, English [3] 5.7GB

GraphX-Single Source
Shortest Path (SSSP) Wikipedia Full Dump, English [3] 5.7GB

MLlib-Naive Bayes Clas-
sifiers (BC) KDD 2012 [1] 10.1GB

Programs and Datasets. We selected a diverse set of 7 pro-
grams. Table 4 lists these programs and the datasets used to
run them. These are representative programs for a wide vari-
ety of tasks including data mining, machine learning, graph
and text analytics. PR, KM, LR, and TC run directly on Spark;
CC and SSSP are graph programs running on GraphX [20],
which is a distributed graph engine built over Spark; BC is a
program in MLib, a machine learning library built on top of
Spark. We used real-world datasets to run all the seven pro-
grams. Note that although the sizes of these input datasets
are not very large, there can be large amounts of intermediate
data generated during the computation.

Baselines. Our initial goal was to compare Panthera with
both Espresso [53] and Write Rationing [7]. However, nei-
ther of them is publicly available. Espresso proposes a pro-
gramming model for developers to develop new applications.
Applying it to Big Data systems would mean that we need

to rewrite each allocation site with the new allocation in-
struction, which is clearly not practical. In addition, Espresso
does not migrate objects based on their access patterns.
The Write Rationing GC has two implementations:

Kingsguard-Nursery (KN) and Kingsguard-Writes (NW). KN
places the young generation in DRAM and the old generation
in NVM. KW also places the young generation in DRAM.
Different from KN, KW monitors object writes and dynami-
cally migrates write-intensive objects into DRAM. Although
we could not directly compare Panthera with these two GCs,
we have implemented similar algorithms in OpenJDK. Un-
der KW, almost all persisted RDDs were quickly moved to
NVM. The frequent NVM reads from these RDDs, together
with write barriers used to monitor object writes, incurred
an average of 41% performance overhead for our bench-
marks. This is because Big Data applications exhibit different
characteristics from non-data-intensive applications.
KN appears to be a good baseline at the first sight. How-

ever, implementing it naïvely in the Parallel Scavenge collec-
tor can lead to non-trivial overhead — the reduced bandwidth
in NVM can create a huge impact on the performance of a
multi-threaded program; this is especially the case for Paral-
lel Scavenge that attempts to fully utilize the CPU resource
to perform parallel object scanning and compaction.
To obtain a better baseline, we placed the young genera-

tion in DRAM and interleaved DRAM and NVM to support the
old generation. In particular, we divided the virtual address
space of the old generation into a number of chunks, each
with 1GB, and used a probability to determine whether a
chunk should be mapped to DRAM or NVM. The probability
is derived from the DRAM ratio in the system. For example,
in a system with DRAM to memory ratio is 1/4 (1/4 DRAM),
each chunk is mapped to DRAM with a 1/4 probability and
to NVM with a 3/4 probability. Note that this is a common
practice [19, 50] to utilize the combined bandwidth of DRAM
and NVM. We refer to this configuration as unmanaged in
the rest of the section, which outperforms both KN and KW
for our benchmarks.

5.3 Performance and Energy

Figure 4 reports the overall performance and energy results
when a 64GB heap is used and DRAM to memory ratio is
1/3 (1/3 DRAM). The performance and energy results of
each configuration are normalized w.r.t. those of the 64GB
DRAM-only version. Compared to the DRAM-only version,
the unmanaged version introduces an average of 21.4% over-
head in time and reduces energy by 31.0%, while Panthera
reduces energy by 37.4% at a 4.3% time overhead.
When a 120GB heap is used, the unmanaged version re-

duces energy by 43.5% at a 19.3% overhead in time. In con-
trast, Panthera increases the energy reduction to 51.7% with
less than 1% execution time overhead. Clearly, considering
the RDD semantics in data placement provides significant
benefit in both energy and performance.
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Figure 4. Overall performance and energy results under a
64GB heap; DRAM to memory ratio is 1/3.
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GC Performance. To understand the GC performance, we
broke down the running time of each program into the mu-
tator and GC time; these results (under the 64GB heap) are
shown in Figure 5. Compared to the baseline, the unmanaged
version introduces performance overhead of 60.4% and 6.9%
in the GC and computation, respectively; while for Panthera
these two overheads are, respectively, 4.7% and 4.5%. Under
the 120GB heap, the GC performance overhead of the un-
managed version and Panthera are, respectively, 58.0% and
3.1%. Note that due to large amounts of intermediate data
generated, the GC is frequently triggered for these programs.
Since the GC is a memory-intensive workload, inappro-

priate data placement can lead to significantly increased
memory access time and thus a large penalty. The penalty
comes from two major sources. First, NVM’s limited band-
width (which is about 1/3 of that of DRAM) has a large
negative impact on the performance of Parallel Scavenge,
which launches 16 threads to perform parallel tracing and
object copying in each (nursery and full-heap) GC. Given
this high degree of parallelism, the performance of the nurs-
ery GC is degraded significantly when scanning objects in
NVM. Second, object tracing is a read-intensive task, which
suffers badly from NVM’s higher read latency.
Panthera improves the GC performance by pretenuring

frequently-accessed RDD objects in DRAM and conducting
optimizations including eager promotion (§4.2.2) and card
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Figure 6.Normalized time for twoDRAM ratios + two heaps.

padding (§ 4.2.3). Eager promotion reduces the cost of (old-
to-young) tracing in each minor GC, while card padding
eliminates unnecessary array scans in NVM, which are sen-
sitive to both latency and bandwidth. A further breakdown
shows that eager promotion, alone, contributes an average of
9% of the total GC performance improvement. The contribu-
tion of card padding is much more significant — without this
optimization, the GC time increases by 60% due to the impact
of NVM’s substantially limited bandwidth and increased la-
tency on the performance of parallel card scanning. In fact,
this impact is so large that the other optimizations would
not work well when card padding is disabled.

Varying Heaps and Ratios. To understand the impact of
the heap sizes and DRAM ratios (DRAM to total memory),
we have conducted experiments with two heap sizes (64GB,
120GB) and two DRAM ratios (1/3, 1/4) on four programs PR,
LR, CC, and BC. Figure 6 reports the time results of these
configurations. Panthera’s time overheads are, on average,
9.5%, 3.4%, 2.1%, and 0%, respectively, under the four config-
urations (64GB, 1/4), (64GB, 1/3), (120GB, 1/4), and (120GB,
1/3). The overheads for the unmanaged version are 25.9%,
20.9%, 23.9%, and 19.3%, respectively, under these same four
configurations.
We make two interesting observations. First, Panthera

is more sensitive to the DRAM ratio than the heap size.
The time overhead can be reduced by almost 10% when the
DRAM ratio increases from 1/4 to 1/3. The reason is that
more frequently accessed RDDs are moved to DRAM, re-
ducing the memory latency and bandwidth bound of NVM.
Another observation is that the unmanaged version is much
less sensitive to DRAM ratio — the time overhead is reduced
by only 5% when the DRAM ratio increases to 1/3. This is
because arbitrary data placement leaves much frequently-
accessed data in NVM, making CPUs stall heavily when
accessing NVM.

Figure 7 depicts the energy results for the two heaps and
two DRAM/NVM ratios. For the 64GB heap, the unmanaged
version reduces energy by an average of 36.7% and 30.7%,
respectively, under the 1/4 and 1/3 DRAM ratio, while Pan-
thera reduces energy by 41.7% and 38.0% under these same
ratios. The energy reductions for the 120GB heap are much
more significant — the unmanaged version reduces energy by
50.2% and 43.5%, respectively, under the 1/4 and 1/3 DRAM
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ratios, while the energy reduction under Panthera increases
to 57% and 51.7% for these two ratios.
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Figure 7. Normalized energy for two DRAM ratios + two
heaps.

5.4 Memory Access Analysis

NVM has high latency and low bandwidth. In general, the
performance penalty caused by high latency increases with
the number of memory access. For the same number of mem-
ory access, NVM incurs more performance penalty for ap-
plications which has lots of high instant bandwidth usage
beyond the limits of NVM bandwidth.

Figure 8 depicts the read/write bandwidth between unman-
aged, and Panthera for GraphX-CC. Compared to unmanaged
version, Panthera migrates most of the memory read/write
from NVM to DRAM and eliminates lots of high instant
memory access bandwidth (peaks in figure). Because Pan-
thera allocates/moves frequently accessed data to DRAM and
reduce lots of unnecessary memory access (§ 4.2.2, § 4.2.3).

5.5 Overhead of Monitoring and Migration

As discussed in §4.2, Panthera performs lightweight method-
level monitoring on RDD objects to detect mis-placed RDDs
for dynamic migration. This subsection provides a closer
examination of dynamic migration’s overhead.
As we monitor only method calls invoked on RDD ob-

jects, we find its monitoring overhead is negligible: it is less
than 1% across our benchmarks. For example, for PageRank,
only about 300 calls were observed on all RDD objects in
a 20-minute execution. The second column of Table 5 re-
ports the number of calls monitored for each application. For
GraphX applications, which has thousands of RDD calls, the
monitoring overheads are still less than 1%.
Dynamic migration (performed by the major GC) rarely

occurs in our experiments, as can be seen from the third
column of Table 5. There are two main reasons. First, the
frequency of amajor collection is very low because amajority
of objects die young and most of the collection work is done
by the minor GC. Second, for four applications (PR, KM, TC,
and LR), our static analysis results are accurate enough and,
hence, dynamic migration is never needed.

We observed that only two RDDs (during the executions of
CC and SSSP) were migrated dynamically. Note that both CC
and SSSP are GraphX applications. Each iteration of the pro-
cessing creates new RDDs representing the updated graph
and persists them. At the end of each iteration, the RDDs
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Figure 8. GraphX-CC’s memory access bandwidth.

Table 5. Dynamic monitoring and migration.
Program # Calls monitored # RDDs migrated
PR 328 0
KM 550 0
LR 333 0
TC 217 0
CC 2945 1
SSSP 3632 1
BC 336 0

representing the old graph are explicitly unpersisted. Our
static analysis, due to lack of support for unpersisted, marks
both old and new graph RDDs as hot data and generates a
DRAM tag for all them. These RDD objects are then allo-
cated in DRAM and their data objects are promoted eagerly
to the DRAM space of the old generation. The RDD objects
representing the old graphs, if they can survive a major GC,
are migrated to the NVM space of the old generation due to
their low access frequency.
To have better understanding of the individual contribu-

tions of pretenuring and dynamic migration, we have dis-
abled the monitoring and migration and rerun the entire
experiments. The performance difference was not notice-
able. Hence, we conclude that most of Panthera’s benefit
stems from pretenuring, which improves the performance
of both the mutator and the GC. However, dynamic moni-
toring and migration increases the generality of Panthera’s
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optimizations, making Panthera applicable to applications
with diverse access characteristics .

6 Related Work
Hybrid Memories for Managed Runtime. To our knowl-
edge, Panthera is the first practical work to optimize data
layout for managed-runtime-based distributed Big Data plat-
forms. Existing efforts [7, 10, 19, 23, 24, 42, 47, 49, 53] that at-
tempt to support persistent Java focus on non-data-intensive
applications or need to totally rebuild the platforms to apply
their optimization.
Inoue and Nakatani [22] identify code patterns in Java

applications that can cause cache misses in L1 and L2. Gao et
al. [18] propose a framework including support from hard-
ware, the OS, and the runtime to extend NVM’s lifetime.
Two recent works close to Panthera are Espresso [53] and
Write Rationing [7]. However, they were not designed for
Big Data systems. Espresso is a JVM-based runtime system
that enables persistent heaps. Developers can allocate ob-
jects in a persistent heap using a new instruction pnew while
the runtime system provides crash consistency for the heap.
Applying Espresso needs to rewrite the Big Data platforms
(e.g., Spark) by pnew, which isn’t practical.

Write Rationing [7] is a GC technique that places highly
mutated objects in DRAM and read-mostly objects in NVM
to increase NVM lifetimes. Like Espresso, this GC focuses on
individual objects and does not consider application seman-
tics. Panthera’s nursery space is also placed in DRAM, similar
to the Kingsguard-nursery in Write Rationing. However, in-
stead of focusing on individual objects, Panthera utilizes
Spark semantics to obtain access information at the array
granularity, leading to effective pretenuring and efficient
runtime object tracking.

Memory Structure. There are two kinds of hybrid memory
structures: flat structure, where DRAM and NVM share a
single memory space, and vertical structure, where DRAM
is used as a buffer for NVM to store hot data. The vertical
structure is normally managed by hardware and transparent
to the OS and applications [25, 30, 33, 35, 44, 57, 60]. Qureshi
et al. [44] shows that a vertical structure with only 3% DRAM
can reach similar performance to its DRAM-only version.
However, the overhead of page monitoring and migration
increases linearly with the working set [50]. The space over-
head e.g., the tag store space of DRAM buffer, can also be
high with a large volume of NVM.

Page-based Migration. A great number of existing works
use memory controllers to monitor page read/write fre-
quency [13, 14, 17, 21, 32, 43, 45, 50, 59] and migrate the
top-ranked pages to DRAM. Another type of hybrid mem-
ory, composed of 3D-stacked DRAM and commodity DRAM,
also adapts similar page monitoring policies [15]. However,
none of these techniques were designed for Big Data systems.

Hassan et al. [21] show that, for some applications, migrating
data at the object level can reduce power consumption.
For Big Data applications that have very large memory

consumption, continuous monitoring at the page granularity
can incur an unreasonable overhead. Page migration also in-
curs overhead in time and bandwidth. Bock et al. [11] report
that page migration can increase execution time by 25% on
average. Panthera uses static analysis to track memory usage
at the RDD granularity, incorporating program semantics to
reduce the monitoring overheads.

Static Data Placement. There exists a body of work that
attempts to place data directly in appropriate spaces based ei-
ther on their access frequencies [13, 32, 43] or on the result of
a program analysis [17, 21, 50]. Access frequency is normally
calculated using a static data liveness analysis or offline pro-
filing. Chatterjee et al. [13] place a single cache-line across
multiple memory channels. Critical words (normally the first
word) in a cache-line are placed in a low-latency channel.
Wei et al. [50] show that the group of objects allocated by the
same site in the source code exhibit similar lifetime behavior,
which can be leveraged for static data placement.

Li et al. [32] develop a binary instrumentation tool to sta-
tistically report memory access patterns in stack, heap, and
global data. Phadke and Narayanasamy [43] profile an ap-
plication’s MLP and LLC misses to determine from which
type of memory the application could benefit the most. Kim
et al. [26] develop a key-value store for high-performance
computers with massive NVM, which provides developers
with a high-level interface to use the distributed NVM. How-
ever, none of these techniques were designed for managed
Big Data systems.

7 Conclusion
We present Panthera, the first memory management tech-
nique for Big Data processing over hybrid memories. Pan-
thera combines static analysis and GC techniques to per-
form semantics-aware data placement. Our evaluation shows
that Panthera reduces energy significantly without incurring
much extra time overhead.
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